Given conditions: lim β‘ π‘ β π π ( π‘ ) = π lim tβa β g(t)=b lim β‘ π₯ β π π ( π₯ ) = π lim xβb β f(x)=c To prove: lim β‘ π‘ β π π ( π ( π‘ ) ) = π lim tβa β f(g(t))=c
- Given conditions:
- limβ‘tβag(t)=b\lim_{t \to a} g(t) = b
- limβ‘xβbf(x)=c\lim_{x \to b} f(x) = c
- To prove:
- limβ‘tβaf(g(t))=c\lim_{t \to a} f(g(t)) = c
- Using the definition of the limit:
- limβ‘tβag(t)=b\lim_{t \to a} g(t) = b means that for every Ο΅β²>0\epsilon’ > 0, there exists a Ξ΄β²>0\delta’ > 0 such that for all tt satisfying 0<β£tβaβ£<Ξ΄β²0 < |t – a| < \delta’, we have β£g(t)βbβ£<Ο΅β²|g(t) – b| < \epsilon’.
- limβ‘xβbf(x)=c\lim_{x \to b} f(x) = c means that for every Ο΅>0\epsilon > 0, there exists a Ξ΄>0\delta > 0 such that for all xx satisfying 0<β£xβbβ£<Ξ΄0 < |x – b| < \delta, we have β£f(x)βcβ£<Ο΅|f(x) – c| < \epsilon.
- Composition of limits:
- To prove limβ‘tβaf(g(t))=c\lim_{t \to a} f(g(t)) = c, we need to show that for every Ο΅>0\epsilon > 0, there exists a Ξ΄>0\delta > 0 such that for all tt satisfying 0<β£tβaβ£<Ξ΄0 < |t – a| < \delta, we have β£f(g(t))βcβ£<Ο΅|f(g(t)) – c| < \epsilon.
- Combining the given limits:
- Let Ο΅>0\epsilon > 0 be given.
- Since limβ‘xβbf(x)=c\lim_{x \to b} f(x) = c, there exists a Ξ΄>0\delta > 0 such that for all xx satisfying 0<β£xβbβ£<Ξ΄0 < |x – b| < \delta, we have β£f(x)βcβ£<Ο΅|f(x) – c| < \epsilon.
- Now, since limβ‘tβag(t)=b\lim_{t \to a} g(t) = b, there exists a Ξ΄β²>0\delta’ > 0 such that for all tt satisfying 0<β£tβaβ£<Ξ΄β²0 < |t – a| < \delta’, we have β£g(t)βbβ£<Ξ΄|g(t) – b| < \delta.
- Putting it all together:
- Choose Ξ΄β²>0\delta’ > 0 such that β£g(t)βbβ£<Ξ΄|g(t) – b| < \delta whenever 0<β£tβaβ£<Ξ΄β²0 < |t – a| < \delta’.
- Now, if 0<β£tβaβ£<Ξ΄β²0 < |t – a| < \delta’, then β£g(t)βbβ£<Ξ΄|g(t) – b| < \delta.
- Since β£g(t)βbβ£<Ξ΄|g(t) – b| < \delta, by the limit of ff, we have β£f(g(t))βcβ£<Ο΅|f(g(t)) – c| < \epsilon.
- Conclusion:
- Thus, for every Ο΅>0\epsilon > 0, we can find Ξ΄β²>0\delta’ > 0 such that if 0<β£tβaβ£<Ξ΄β²0 < |t – a| < \delta’, then β£f(g(t))βcβ£<Ο΅|f(g(t)) – c| < \epsilon.
- This proves that limβ‘tβaf(g(t))=c\lim_{t \to a} f(g(t)) = c.
Hence, we have shown that if limβ‘tβag(t)=b\lim_{t \to a} g(t) = b and limβ‘xβbf(x)=c\lim_{x \to b} f(x) = c, then limβ‘tβaf(g(t))=c\lim_{t \to a} f(g(t)) = c