1. Given conditions:
    • lim⁑tβ†’ag(t)=b\lim_{t \to a} g(t) = b
    • lim⁑xβ†’bf(x)=c\lim_{x \to b} f(x) = c
  2. To prove:
    • lim⁑tβ†’af(g(t))=c\lim_{t \to a} f(g(t)) = c
  3. Using the definition of the limit:
    • lim⁑tβ†’ag(t)=b\lim_{t \to a} g(t) = b means that for every Ο΅β€²>0\epsilon’ > 0, there exists a Ξ΄β€²>0\delta’ > 0 such that for all tt satisfying 0<∣tβˆ’a∣<Ξ΄β€²0 < |t – a| < \delta’, we have ∣g(t)βˆ’b∣<Ο΅β€²|g(t) – b| < \epsilon’.
    • lim⁑xβ†’bf(x)=c\lim_{x \to b} f(x) = c means that for every Ο΅>0\epsilon > 0, there exists a Ξ΄>0\delta > 0 such that for all xx satisfying 0<∣xβˆ’b∣<Ξ΄0 < |x – b| < \delta, we have ∣f(x)βˆ’c∣<Ο΅|f(x) – c| < \epsilon.
  4. Composition of limits:
    • To prove lim⁑tβ†’af(g(t))=c\lim_{t \to a} f(g(t)) = c, we need to show that for every Ο΅>0\epsilon > 0, there exists a Ξ΄>0\delta > 0 such that for all tt satisfying 0<∣tβˆ’a∣<Ξ΄0 < |t – a| < \delta, we have ∣f(g(t))βˆ’c∣<Ο΅|f(g(t)) – c| < \epsilon.
  5. Combining the given limits:
    • Let Ο΅>0\epsilon > 0 be given.
    • Since lim⁑xβ†’bf(x)=c\lim_{x \to b} f(x) = c, there exists a Ξ΄>0\delta > 0 such that for all xx satisfying 0<∣xβˆ’b∣<Ξ΄0 < |x – b| < \delta, we have ∣f(x)βˆ’c∣<Ο΅|f(x) – c| < \epsilon.
    • Now, since lim⁑tβ†’ag(t)=b\lim_{t \to a} g(t) = b, there exists a Ξ΄β€²>0\delta’ > 0 such that for all tt satisfying 0<∣tβˆ’a∣<Ξ΄β€²0 < |t – a| < \delta’, we have ∣g(t)βˆ’b∣<Ξ΄|g(t) – b| < \delta.
  6. Putting it all together:
    • Choose Ξ΄β€²>0\delta’ > 0 such that ∣g(t)βˆ’b∣<Ξ΄|g(t) – b| < \delta whenever 0<∣tβˆ’a∣<Ξ΄β€²0 < |t – a| < \delta’.
    • Now, if 0<∣tβˆ’a∣<Ξ΄β€²0 < |t – a| < \delta’, then ∣g(t)βˆ’b∣<Ξ΄|g(t) – b| < \delta.
    • Since ∣g(t)βˆ’b∣<Ξ΄|g(t) – b| < \delta, by the limit of ff, we have ∣f(g(t))βˆ’c∣<Ο΅|f(g(t)) – c| < \epsilon.
  7. Conclusion:
    • Thus, for every Ο΅>0\epsilon > 0, we can find Ξ΄β€²>0\delta’ > 0 such that if 0<∣tβˆ’a∣<Ξ΄β€²0 < |t – a| < \delta’, then ∣f(g(t))βˆ’c∣<Ο΅|f(g(t)) – c| < \epsilon.
    • This proves that lim⁑tβ†’af(g(t))=c\lim_{t \to a} f(g(t)) = c.

Hence, we have shown that if lim⁑tβ†’ag(t)=b\lim_{t \to a} g(t) = b and lim⁑xβ†’bf(x)=c\lim_{x \to b} f(x) = c, then lim⁑tβ†’af(g(t))=c\lim_{t \to a} f(g(t)) = c