GHZ Derivation Using Dirac Notation

The GHZ state provides a clean, deterministic contradiction with local hidden variable theories using quantum mechanics and entangled states. Below is a step-by-step derivation using Dirac notation.

🔭 GHZ State

We define the canonical GHZ state for 3 qubits:

    \[ |\text{GHZ}\rangle = \frac{1}{\sqrt{2}} \left( |000\rangle - |111\rangle \right) \]

Each qubit is sent to one of three observers: Alice, Bob, and Charlie.

🧮 Measurement Operators

Each observer measures either:

  • Pauli-X: \sigma_x = |0\rangle\langle1| + |1\rangle\langle0|
  • Pauli-Y: \sigma_y = i|1\rangle\langle0| - i|0\rangle\langle1|

🔸 Example: X_A X_B X_C

Applying X \otimes X \otimes X to the GHZ state:

    \[ X^{\otimes 3} |\text{GHZ}\rangle = \frac{1}{\sqrt{2}} (|111\rangle - |000\rangle) = -|\text{GHZ}\rangle \]

So,

    \[ X_A X_B X_C |\text{GHZ}\rangle = -1 \cdot |\text{GHZ}\rangle \]

🔸 Example: X_A Y_B Y_C

Apply \sigma_x \otimes \sigma_y \otimes \sigma_y to |\text{GHZ}\rangle:

  • \sigma_x |0\rangle = |1\rangle, \sigma_x |1\rangle = |0\rangle
  • \sigma_y |0\rangle = -i|1\rangle, \sigma_y |1\rangle = i|0\rangle

Operating on |000\rangle:

    \[ |000\rangle \mapsto (-i)^2 |111\rangle = -|111\rangle \]

Operating on |111\rangle:

    \[ |111\rangle \mapsto i^2 |000\rangle = -|000\rangle \]

Thus:

    \[ X_A Y_B Y_C |\text{GHZ}\rangle = -(|111\rangle + |000\rangle)/\sqrt{2} = -|\text{GHZ}\rangle \]

But if we define the GHZ state with a minus sign:

    \[ |\text{GHZ}\rangle = \frac{1}{\sqrt{2}}(|000\rangle - |111\rangle) \]

Then:

    \[ X_A Y_B Y_C |\text{GHZ}\rangle = +|\text{GHZ}\rangle \]

✅ Eigenvalue: +1

🧾 Final Quantum Predictions

Operator Eigenvalue (Quantum)
X_A X_B X_C -1
X_A Y_B Y_C +1
Y_A X_B Y_C +1
Y_A Y_B X_C +1

🤯 Local Realism Contradiction

Assume predefined values for each measurement (±1). Then, from the quantum predictions:

    \[ A_X B_X C_X = -1 \\ A_X B_Y C_Y = +1 \\ A_Y B_X C_Y = +1 \\ A_Y B_Y C_X = +1 \]

Multiply the last three:

    \[ (A_X B_Y C_Y)(A_Y B_X C_Y)(A_Y B_Y C_X) = A_X A_Y^2 B_X B_Y^2 C_X C_Y^2 = A_X B_X C_X \]

Since squares of ±1 are 1, this implies:

    \[ A_X B_X C_X = +1 \]

This contradicts the earlier prediction:

    \[ A_X B_X C_X = -1 \]

❌ Logical Contradiction

Local hidden variable theories predict +1, quantum mechanics predicts −1. This contradiction is not statistical—it’s logical and deterministic.

✅ Thus, **local realism is incompatible with quantum mechanics**.