Hydrogen Atom in 1D: Schrödinger Equation Solution

Step 1: Time-Independent Schrödinger Equation (TISE)

The 1D Schrödinger equation for a hydrogen-like atom is:

    \[ \frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} \left( E + \frac{e^2}{4\pi\epsilon_0 |x|} \right) \psi = 0 \]

Step 2: Change of Variables

Using the dimensionless variable \xi = x/a_0, where a_0 is the Bohr radius:

    \[ a_0 = \frac{4\pi\epsilon_0 \hbar^2}{m e^2} \]

The equation becomes:

    \[ \frac{d^2\psi}{d\xi^2} + \left(\lambda + \frac{1}{|\xi|}\right) \psi = 0 \]

Step 3: Asymptotic Behavior

For large \xi, the equation simplifies to:

    \[ \frac{d^2\psi}{d\xi^2} - \kappa^2 \psi = 0 \]

which has the solution:

    \[ \psi(\xi) \sim e^{-\kappa \xi} \]

Step 4: Power Series Solution

Expanding \psi(\xi) as a power series:

    \[ \psi(\xi) = e^{-\kappa \xi} \sum_{n=0}^{\infty} a_n \xi^n \]

The recurrence relation for coefficients is:

    \[ a_{n+1} = \frac{(2\kappa n - 1)}{(n+1)^2} a_n \]

Step 5: First Four Stationary States

n Energy E_n Wavefunction \psi_n(\xi)
0 -\frac{\hbar^2}{2ma_0^2} e^{-\xi}
1 -\frac{\hbar^2}{2ma_0^2} \frac{1}{4} (1 - 2\xi) e^{-\xi}
2 -\frac{\hbar^2}{2ma_0^2} \frac{1}{9} (1 - 4\xi + \frac{4}{3} \xi^2) e^{-\xi}
3 -\frac{\hbar^2}{2ma_0^2} \frac{1}{16} (1 - 6\xi + 6\xi^2 - \frac{4}{5} \xi^3) e^{-\xi}

Graph of Wavefunctions