Part (i)

Find the scalar product ⟨Ψ−(θ)∣Ψ+(θ)⟩\langle \Psi_{-}(\theta) | \Psi_{+}(\theta) \rangle and discuss.

Given: ∣Ψ+(θ)⟩=cos⁡(θ)∣0⟩+sin⁡(θ)∣1⟩|\Psi_{+}(\theta)\rangle = \cos(\theta) |0\rangle + \sin(\theta) |1\rangle ∣Ψ−(θ)⟩=cos⁡(θ)∣0⟩−sin⁡(θ)∣1⟩|\Psi_{-}(\theta)\rangle = \cos(\theta) |0\rangle – \sin(\theta) |1\rangle

To find the scalar product:

⟨Ψ−(θ)∣Ψ+(θ)⟩=(cos⁡(θ)⟨0∣−sin⁡(θ)⟨1∣)(cos⁡(θ)∣0⟩+sin⁡(θ)∣1⟩)\langle \Psi_{-}(\theta) | \Psi_{+}(\theta) \rangle = (\cos(\theta) \langle 0| – \sin(\theta) \langle 1|)(\cos(\theta) |0\rangle + \sin(\theta) |1\rangle)

Expanding the product, we get:

⟨Ψ−(θ)∣Ψ+(θ)⟩=cos⁡2(θ)⟨0∣0⟩+cos⁡(θ)sin⁡(θ)⟨0∣1⟩−sin⁡(θ)cos⁡(θ)⟨1∣0⟩−sin⁡2(θ)⟨1∣1⟩\langle \Psi_{-}(\theta) | \Psi_{+}(\theta) \rangle = \cos^2(\theta) \langle 0|0\rangle + \cos(\theta)\sin(\theta) \langle 0|1\rangle – \sin(\theta)\cos(\theta) \langle 1|0\rangle – \sin^2(\theta) \langle 1|1\rangle

Using the orthonormality of the basis states (⟨0∣0⟩=1\langle 0|0\rangle = 1, ⟨1∣1⟩=1\langle 1|1\rangle = 1, and ⟨0∣1⟩=⟨1∣0⟩=0\langle 0|1\rangle = \langle 1|0\rangle = 0), we have:

⟨Ψ−(θ)∣Ψ+(θ)⟩=cos⁡2(θ)⋅1+0−0−sin⁡2(θ)⋅1=cos⁡2(θ)−sin⁡2(θ)\langle \Psi_{-}(\theta) | \Psi_{+}(\theta) \rangle = \cos^2(\theta) \cdot 1 + 0 – 0 – \sin^2(\theta) \cdot 1 = \cos^2(\theta) – \sin^2(\theta)

Therefore:

⟨Ψ−(θ)∣Ψ+(θ)⟩=cos⁡(2θ)\langle \Psi_{-}(\theta) | \Psi_{+}(\theta) \rangle = \cos(2\theta)

Discussion: The scalar product ⟨Ψ−(θ)∣Ψ+(θ)⟩=cos⁡(2θ)\langle \Psi_{-}(\theta) | \Psi_{+}(\theta) \rangle = \cos(2\theta) tells us about the overlap between the states ∣Ψ−(θ)⟩|\Psi_{-}(\theta)\rangle and ∣Ψ+(θ)⟩|\Psi_{+}(\theta)\rangle. When θ=0\theta = 0, cos⁡(2θ)=1\cos(2\theta) = 1, so the states are identical. When θ=π4\theta = \frac{\pi}{4}, cos⁡(2θ)=0\cos(2\theta) = 0, indicating that the states are orthogonal.